Almost unimodal and real-rooted graph polynomials
نویسندگان
چکیده
It is well known that the coefficients of matching polynomial are unimodal. Unimodality (or their absolute values) other graph polynomials has been studied as well. One way to prove unimodality real-rootedness. Recently I. Beaton and J. Brown (2020) proved for almost all graphs domination form a unimodal sequence, C. Barton, D. Pike forest (aka acyclic polynomial) real-rooted iff G forest. Let A be property, let ai(G) number induced subgraphs order i which in A. Inspired by results we prove: Theorem: If complement hereditary then G(n,p) sequence property contains not clique or clique, PA(G;x)=∑iai(G)xi G∈A.
منابع مشابه
Iterated Claws Have Real-rooted Genus Polynomials
We prove that the genus polynomials of the graphs called iterated claws are real-rooted. This continues our work directed toward the 25-year-old conjecture that the genus distribution of every graph is log-concave. We have previously established log-concavity for sequences of graphs constructed by iterative vertexamalgamation or iterative edge-amalgamation of graphs that satisfy a commonly obse...
متن کاملSome Graph Polynomials of the Power Graph and its Supergraphs
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
متن کاملUnimodal Permutations and Almost-Increasing Cycles
In this paper, we establish a natural bijection between the almost-increasing cyclic permutations of length n and unimodal permutations of length n − 1. This map is used to give a new characterization, in terms of pattern avoidance, of almostincreasing cycles. Additionally, we use this bijection to enumerate several statistics on almost-increasing cycles. Such statistics include descents, inver...
متن کاملA Sequence of Unimodal Polynomials
A finite sequence of real numbers {d0, d1, · · · , dm} is said to be unimodal if there exists an index 0 ≤ j ≤ m such that d0 ≤ d1 ≤ · · · ≤ dj and dj ≥ dj+1 ≥ · · · ≥ dm. A polynomial is said to be unimodal if its sequence of coefficients is unimodal. The sequence {d0, d1, · · · , dm} with dj ≥ 0 is said to be logarithmically concave (or log concave for short) if dj+1dj−1 ≤ dj for 1 ≤ j ≤ m − ...
متن کاملThe Polynomials of a Graph
In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula: [Sum (d{_u}(k))]=[Sum (a{_kj}{S{_G}^j}(1))], where, u is an element of V(G) and 1<=j<=k.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2023
ISSN: ['1095-9971', '0195-6698']
DOI: https://doi.org/10.1016/j.ejc.2022.103637